Window Interfaces

A Taxonomy of Window Manager User

Interfaces

Brad A. Myers
Carnegie Mellon University

StionScreen

LI EE VR "
Mail E-Demo||Tester i€
sse see ||Cmmmmm | . | §

This article presents a taxonomy for the user-visible
parts of window managers. it is interesting that there
are actually very few significant differences, and the
differences can be classified in a taxonomy with fairly
limited branching. This taxonomy should be useful in
evaluating the similarities and differences of various
window managers, and it will also serve as a guide for
the issues that need to be addressed by designers of
future window manager user interfaces. The advan-
tages and disadvantages of the various options are aiso
presented. Since many modern window managers
allow the user interface to be customized to a large
degree, it is important to study the choices available.

September 1988

Awindow manager is a software package that helps
the user monitor and control different contexts by
separating them physically onto different parts of one or
more display screens. At its simplest, a window manager
provides many separate terminals on the same screen,
each with its own connection to a time-sharing com-
puter. At its most advanced, a window manager supports
many different activities, each of which uses many win-
dows, and each window, in turn, can contain many
different kinds of information including text, graphics,
and even video. Window managers are sometimes imple-
mented as part of a computer’s operating system and
sometimes as a server that can be used if desired. They

0272-1716/88/0900-0065%01.00 1988 IEEE 65

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

® cd

tmp)> cd Zusr

ust) cd Zusr/misc/ X/men

jman>

mani/ man3/ man8/

jman> cd manl

manl>

X.1 resize,.l xdpr. 4 ximpv,1 . xtrek,1

b1ff. 1 uwm, 1 xdvi, 1 xinit,1 xrefresh, i sad,1

bitmap.1 xclock.1 xfax,1 xload.1 xset. 1 aelninfo.l

keycomp.i xcolors,i xfd.1 xrwm, § xshell, 1 soum, 1

pikapix,1 xdemo,1 xhost,1 xperfmon,1 xterm,i swud, 1

man1) 11

total 181

-rw-r--r-- 1 misc 16591 Apr 30 20:25 X.1

-rw-r--r-= 1 misc 2188 Apr 30 20:25 biff,1

-rw-r--r-- 1 mise 13633 Apr 30 20:25 bitmap,1 —_—

-rw-r--r~- 1 misc 5648 Apr 30 20:25 keycomp.1

~rw-r--r-- 1 misc 3516 Rpr 30 20:25 =+ 4

~rw-r--r-- 1 misc ég;g Apr I350 30:25 spice

-rw-r=-r-= 1 misc 1 Rpr 30 20:2%5 ~Jul- .

i1 1 mise 5145 Apr 30 20+ 20-Jul-87 11:15 Daniel, Klein@sei,cmu, edu Changing the TOC

-rw-r--r-- 1 misc 2421 Rpr 30 20:26

mimr—-r—- 1 misc 6711 Apr 30 20126 Z:\;;lg:l“tc:go"::r:he #::\'ﬂ'e and table contents in the regular contents, and

~rw-r=-r-- 1 migc 1023 Apr 30 20:26 ' *

-rw-r--r=- 1 misc 2736 Apr 30 20:26 Modify(TableCounter, Table "Contents™)

-rw-r--r== 1 misc 1783 Apr 30 20:26 . . -

rrre 1 mise 2671 fipr 30 20126 Wodify(FigureCounter, Table "Contents”™)
1 misc 1526 Apr 30 20:26 -
1 misc 3805 fipr 30 20126 1 haven”t tried it, but it looks like it should wi

-rw-r--r-- 1 misc 2311 Apr 30 20:26

~rw-r--r-~ 1 misc 4360 Apr 30 20:26

-rw-r--r-- 1 misc 10720 Apr 30 20:26

-rw-r--r=- 1§ misc 3472 fpr 30 20:26

-rw-r--r-- 1 misc 5002 Apr 30 20:26

-rw-r--r-- 1 misc 1053 Rpr 30 20:26

—rw-r--r-- 1 mise 2151 Rpr 30 20:26

-rw-r--r-- 1 misc 6411 Rpr 30 20:26

-rw-r--r-- 1 omisc 27590 Apr 30 20:26

~rw-r--r-- 1 misc 742 Apr 30 20:26

-rw-r=--r-- 1 misc 2367 Apr gO 20:26

~rw-r--r-- 1 misc 4192 Rpr 30 20:26 JEr e B

~rw-r--r-- 1 misc 9263 Rpr 30 20:26 spice/usrx1/dzg/odyssey’

-rw-r--r=-= 1 misc 2654 Jul 9 13:57 spice/usrxi/dzg/odyssey” []

man1) xwd -out /tmp/wd,dume

Figure 1. An example of a typical screen using the X window manager* with overlapping windows. Some

windows have title lines (the top-left window’s says *

‘xterm #2”’). The background, where there are no win-

dows, is gray. The small windows at the bottom are icons.

can even be implemented by individual application pro-
grams or programming environments.

Window managers have become popular primarily
because they allow separate activities to be put in phys-
ically separate parts of the computer screen. The user of
a computer is frequently shifting focus from one activity
to another, including such small shifts as changing from
editing one file in a text editor to editing another, and
such large context shifts as changing from compiling a
program to reading mail.

Before window managers, people had to remember
their various activities and how to switch back and forth.
Window managers allow each activity to have its own

66

separate area of the screen (its own “window’"). Switch-
ing from one window to another is usually very simple.
This physical separation is even more important when
the operating system allows multiple activities to oper-
ate at the same time (“multiprocessing”). For example,
in Unix, the user can compile one file at the same time
a different file is being edited. On a conventional termi-
nal, if the compiler process outputs any data, it is con-
fusingly interspersed with the editor’s display. If the two
processes request input at the same time, the user may
give the input to the wrong program. Window managers
help with these problems by providing separate areas in
which each process can perform input and output.

[EEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

Another advantage of window managers is that they
provide a higher level interface to the mouse, keyboard,
and screen, and therefore can support much higher qual-
ity user interfaces. For example, the window managers
on the Star'? and Macintosh® help support the meta-
phor that using the computer is like doing operations on
a physical desk. This higher level interface can also make
application code more portable from one machine to
another, since the same window manager procedural
interface can be provided on different machines. This
was an important motivation for the development of the
X window manager.*

Today there are a large number of window managers
in existence from many companies and research groups,
and more are being created all the time. In surveying
these window managers, it became clear that there are
many similarities between all of them, and the differ-
ences can be characterized on a small number of differ-
ent axes. (This survey was started at the Alvey MMI
Workshop on Window Management.”) Most of the
ideas seem to have originated at the Xerox Palo Alto
Research Center, including windows in general
(Smalltalk®), pop-up menus,” icons (Tajo®’ and Star"?),
and tiled windows (Cedar'®"). Of course every window
manager has its own original aspects, but most of the
important features of the user interfaces of window
managers do not seem to vary markedly.

With the advent of the X window manager,* which is
rapidly becoming a de facto standard, the study of the
user interface component is becoming more critical.
This is because X and many other modern window
managers allow the user interface to be changed, while
still maintaining the same application interface. User
interface designers therefore are faced with not only a
choice for the user interface of their application, but also
for that of the window manager. It is therefore important
to focus on the different choices in the user interface
component of window managers. This article presents
a taxonomy of the choices used in existing window man-
ager user interfaces, along with some advantages and
disadvantages of each choice.

(At the time of this writing, Xerox, AT&T, and Sun had
just announced a portable window-manager user inter-
face called “Open Look,” which apparently will be
implemented on multiple-window managers, including
X * and NeWS." Open Look, which is based partially on
the user interface of the Xerox Star, is designed to match
the ease of use of the Macintosh, and thereby make Unix
systems more user friendly)

Definition of terms

The previous section defined “window managers”
and discussed the reason they are so popular. This sec-
tion defines some related terms that are important for
understanding how window managers work.

A window manager can be logically divided into two

September 1988

layers, each of which has two parts. The base layer imple-
ments the basic functionality of the window manager.
The two parts of this layer handle the display of graphics
in windows and access to the various input devices
(usually a keyboard and a pointing device such as a
mouse). The primary interface of this layer is to other
programs, and it is called the window manager’s appli-
cation or program interface. The base layer is not dis-
cussed further in this article. The other layer of window
managers is the user interface. This includes all aspects
that are visible to the user. Sometimes the base layer is
called a window system, reserving the name ‘“‘window
manager’’ for the user interface layer. Since this article
deals only with the user interface layer, the term “‘win-
dow manager” is used here.

The two parts of the user interface layer are the presen-
tation, which is composed of the pictures that the win-
dow manager displays, and the operations, which are the
commands the user can give to manipulate the windows
and their contents. Figure 1 shows windows that demon-
strate different aspects of the presentation, including
patterns or pictures for the area where there are no win-
dows, title lines and borders for windows, etc. Examples
of the operations that may be provided for windows
include moving them around on the screen and specify-
ing their size.

One very important aspect of the presentation of win-
dows is whether they can overlap or not. Overlapping
windows, sometimes called covered windows, are a fea-
ture allowing a window to be partially or totally on top
of another window, as shown in Figure 1. This is also
sometimes called the desktop metaphor, since windows
can cover each other like pieces of paper can cover each
other on a desk. (There are usually other aspects to the
desktop metaphor, however, such as presenting file oper-
ations in a way that mimics office operations, as in the
Star office workstation."?) The other alternative is
called tiled windows, which means that windows are not
allowed to cover each other. Figure 2 shows an example
of tiled windows. The advantages and disadvantages of
each are discussed below. Obviously, a window manager
that supports covered windows can also allow them to
be side by side, but not vice versa. Therefore, a window
manager is classified as covered if it allows windows to
overlap.

Another important aspect of the presentation of win-
dows is the use of icons. These are small pictures that
represent windows. They are used because there would
otherwise be too many windows to conveniently fit on
the screen and manage easily. When a window is not in
use, it can be removed and replaced with its icon, and
later conveniently retrieved when needed. Figure 3
shows examples of icons from some different window
managers. The section on icons discusses the options
available for icons in more detail.

An important aspect of window managers is how the
user changes which window is connected to the key-

67

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from |IEEE Xplore. Restrictions apply.

iear o) . vl
Find Word Def Posieon Normelise PrevPiace Ressiect
FustovelOnl r

Boasd on May 34, (M) 182 sm, by Toreimen
CAanged Call @ GetTORIR 18 SNIPICORpIvS

BAS CRNRBIAG -, 04. Normeas T4 FPAL LECR N SN ane [t Ne
chmpm © Locapes

Btvov! on Sapmater |, 1% (21(pm, &y Tomim o
Moot Pug wheren ! Wi Rot passmny o nght swmg @ Aow L iFroasourer
shungte »: Help

@ Uy DI JnBer WBan TOKeAlrX Sexsuse of N
Lo

! ' Lo L v -t

Rope Pl w”

ar e+

A8 » Rogn [Angu[erpe rgw) - 4 -
H

89 ot ans reens Al besaks cleared
a1 Awn

Serwd ACTIOR F?, rewraiag W Work Are D

PARC CED PICH.C
Re uoe of 5w and iR

Ehng

novt Srsdge Wednosday 4 Jogwaber

Re: wi & Loy wad Lint

Re ver of ivw md Lim

Re ues of Low ad Lin

DEC/Therne mwface

Munag Ltary Sooks

Tww bugs W ol

Neu Wilhein saissr chan et © 169 umerew
Puowell Pary for Sam end Jack Sargemt
Mae A e Clare Baliet @ Flat Couwme

Re wiw of v aad Lin

oYy glasens foumd

Tramoa wnsla
1) 3op ¥ riesspe

1 fap 81 Mam agpe
1550p §) Owa & Ted &
13 Sop 03 remsasw po
1) Sop 0) Lewvua P4

15 Sop 9) ot pe

7 16 Sep 83 Remouck 23
116 Sep 8 Pndes PA
1T 16 Bup §3 ediiompe
1 19 Sap §) MBrewn ps
1 19 Sap §) Pwt PA
P 1) Sup 03 Rewam pa
? 19 Sep 83 lurrehmn gt
7 i9 Sep 0) Jem DA

? 19 Sep 81 MBrewn po
P19 Sep §) Swimehannps
S 19 Cap 0) Mermung pe
! Biep) Patmdm
T 22 Sap 83 CasePA

T 30 2ap §) Al la
7 2% Sap §) Tremem PA

TRAre 15 00 New Bl & -¥0p-; 1904]) FUT
[Arctivel (Apgond] ea Pus
[Sreow]

Acuve Deiowd AMTypasfugeewncns Awas BackSurmer CotarPepd
DomAndTime Goslorviampios Dl lision [ecumsausion Ferva
HowTo Mumor lmplediugg MuaePoll 0 Mk MyBupy
MyCugpesnan; Nowbeskiadzs Owusr:Boi: Remem berfwufy
Remiadsctiampity uverdat Spell [weasuggesnons TS
HurP e han g (lsarf swrPnll ['wrkogecy Viden“epe

Figure 2. A screen from the Cedar'®"

window manager. Windows are ‘‘tiled’’ into two columns. There is a

row of icons along the bottom. Each window has a fixed menu of commands below the title line.

board. Although there will typically be multiple win-
dows, there is usually only one keyboard for each user.
Therefore, only one window at a time can be attached
to the keyboard. This window is termed the listener, since
it is listening to the user’s typing. Another term for this
window is the input (or keyboard) focus. Older systems
called the listener the “active window” or “current win-
dow,” but these are poor terms, since in a multiproces-
sing system, many windows can be actively outputting
information at the same time. Window- managers provide
various ways to specify and show which window is the
listener.

Most window managers use some form of pointer,
which is an input device that returns a 2D value used to
identify locations on the screen. Pointing devices are
typically used for specifying window size and position,
for selecting characters in an editor, for drawing lines in
a graphics program, and for transferring a picture (such

68

as a map) into the computer by specifying points (this last
use is called digitizing). Examples of pointing devices are
light pens, electromagnetic tablets with pucks or pen-
like styli, touch-sensitive surfaces (touch tablets or touch
screens), trackballs, and mechanical or optical mice.™
Since the most popular pointing device for window
managers is a mouse, the term mouse will often be used
in this article to mean pointing device.

Light pens and touch screens are used for pointing
directly at the screen, but with the other types the user
moves a device on the desk or on a special surface, and
a small picture, called the tracking symbol or cursor, fol-
lows the movement on the screen. In many window
managers the picture for the cursor can be changed, but
a common picture is an arrow pointing to the upper left.

Pointing devices usually have one or more buttons. For
example, there are typically one to three buttons on the
top of a mouse. Some window managers allow the user

IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

Mail E-Demo||Tester % howSe e
[o . -] ———— Fxihase
XX XX C—] " sars
Sapphire ==
3 1]
PoL | 1 e S Ergw s
,.' (W @ D Fanm——
Meacintosh Clock Trash Can MacPaint MacWrite Document = b
wiliams
Macintosh L

Figure 3. Examples of icons from different systems: Sapphire,’® Macintosh,’ X,* Cedar,'” and Star." Some of
the X icons contain the actual text displayed in the window in a tiny (unreadable) font.

to press two or three times quickly to specify additional
commands. This is called multiclicking (for example,
pressing twice quickly is double-clicking). Window
managers may also support holding down keyboard keys
(such as the shift key) while pressing a mouse button.
This is often used to modify the button’s meaning.

The window manager versus add-ons

To compare window managers, it is first necessary to
establish the boundaries of discussion. A window man-
ager provides the basic service of managing different
windows on the screen, as defined above. In many sys-
tems, however, other services are also provided, and
these are often classified as part of the window manager.
By providing these services in a central place, the system
promotes consistency and makes applications easier. To
compare the window managers of these different sys-
tems, however, it is important to classify which aspects

September 1988

are being compared and which are considered add-on
services. This section discusses some of these add-ons
so that the rest of the article can concentrate on the win-
dow manager portion itself.

Some common add-ons are the following:

1. atypescript package (handles user typing)

2. entire editors

w

. a graphics package for output (also called the imag-
ing model

. menus of various kinds
. forms (also called dialogue boxes)

. scrolling mechanisms

NSOy v s

. general tool kits (which usually include menus,
forms, and scrolling mechanisms)

69

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

Table. Window managers discussed in this article.

Primary Tiled or
Name Created by Computer Covered Comments References
Smalltalk Xerox PARC Alto C first window system 6,7,29,30
DLisp Xerox PARC Alto+mainframe C 40
Interlisp-D Xerox PARC Dorado C 35
Tajo Xerox SDD Dandelion C first use of icons, renamed "XDE" 89,38
Star Xerox SDD Dandelion T first product with windows 1,2,46
Blit AT&T Bell Labs Blit C 1st documented impl.; terminal emulator 36
Display Manager Apollo Apollo C originally had no mouse 49
n Symbolics Symbolics C uses multi-clicking 48
Sapphire Three Rivers PERQ C active icons 13
PNX ICL PERQ C feedback is full windows 41
SunWindows Sun Sun C 17
Cedar Xerox PARC Dorado T first tiled; used graphics package 10,11,20
Window Manager Apple Lisa C 18
Window Manager Apple Macintosh C popularized windows & mouse 3,19
Andrew CMUITC IBM) IBM-RT, Sun T 16
Whitechapel Whitechapel MG-1 C 23
RTL/CRTL Siemens PERQ T no columns; used constraints 33
MSWindows Microsoft IBM-PC T current version supports covered also 28
Viewpoint Xerox SDD 6085/1186 T or C successor to Xerox Star 32
X MIT Project Athena <many> C first "portable” WM; emerging standard 4,24,27
NeWS Sun Sun, eftc. C uses Postscript; nee "Sundew"” 12,21

5

8. user interface management systems or UIMSs"
(which usually include a tool kit)

Typescript package

An example of a service that is often provided by win-
dow managers is the handling of typing. This is often
called a typescript package, and it usually supports some
rudimentary line editing (backspace, delete line, etc.).
The idea is to mimic the teletype interface to terminals
provided by conventional time-sharing operating sys-
tems. Most programming languages (for example C and
Pascal) have as a function to read a line of text. When this
function is executed, the user is typically allowed to edit
the typed line before using carriage-return to confirm the
entry. The typescript package handles this input also. In
addition, it may provide more elaborate commands, and,
in the extreme, be a full-fledged editor, as in the Andrew
system.’ In a window system, the typescript package
may also provide the ability to copy text from one win-
dow to another, as in SunWindows."” An advanced form
of this copying is the clipboard in the Lisa ** and Macin-
tosh,’ which provides the ability to copy arbitrary text
and graphics from one window to another.

Editors

In addition to the typescript package used to handle
command typing, some window managers include an
entire text editor, which can be used for preparing docu-

70

ments and programs. This may or may not be the same
package used for handling typing to programs.

Graphics package

Some window managers provide a sophisticated
graphics package for application programs to help them
produce output. Clearly, the window manager needs to
output some graphics to draw the title lines, window
borders, icons, backgrounds, etc. The primitives that the
window manager provides for handling output is called
the “imaging model” of the window manager.

Some window managers, such as SunWindows and X,
provide a simple imaging model and expect that more
sophisticated graphics packages will be built using the
window manager. This allows more flexibility, since mul-
tiple graphics packages can be used. For example, the
CORE, GKS, and PHIGS graphics packages have all been
implemented on top of SunWindows. In addition, the
graphics operations may be more efficient, since the
window manager can export the primitives supported
by the hardware. The interface to the window manager
may be simpler, since there are fewer primitives.

Other window managers are built on top of powerful
graphics packages. For example, the Macintosh is on top
of QuickDraw," Cedar is on top of CedarGraphics,?
and NeWS,"” which was originally called SunDew,”" is
on top of a version of Postscript.”” Adobe Systems and
Next are creating another version of Postscript called

[EEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

Display Postscript to serve as the imaging model for
future window managers. The advantage of using an
underlying graphics package is that the window man-
ager can provide a more attractive presentation. For
example, the Macintosh window manager displays drop-
shadows and rounded corners. Other advantages
include a more consistent interface to and between
applications and better device independence.

User interface tool kits

Another service often provided by window managers
is a library of procedures to help applications create their
user interfaces. For example, almost every window man-
ager provides a menu package. Whitechapel®* also pro-
vides scroll bars that can be displayed on the windows.
The Macintosh comes with a complete “Toolbox,”"
including menus, dialogue boxes, scroll bars, and text-
editing. A full tool kit for X is also under development.**
The advantage of a tool kit is that il significantly reduces
the effort required to create higher quality user inter-
faces, and it helps ensure consistency among the user
interfaces of different application programs on the same
machine. In addition, some window managers also pro-
vide a tool to help organize and use the contents of the
tool kit. Examples of this are the Apple MacApp
program”” and Apollo’s Open Dialog.”" These tools are
often called user interface management systems' and
are necessary because programmers often find that tool
kits are large and difficult to use.

Window managers surveyed

Mentioning every window manager is impossible,
since new ones appear all the time, and many are not
documented in generally available publications. The
selection here is not meant to be an indication of which
window managers are best. The ones included are the
ones that exemplify important variations. In addition,
window managers are continually changing, so the
descriptions for some window managers may no longer
be accurate. The primary objective of this article is to
illustrate the choices available in window manager user
interfaces rather than to describe fully any particular
window manager.

Some window managers allow their user interfaces to
be changed. For example, X allows significant changes.
For this class of window manager, the article describes
one of the available user interfaces, and some of the
variability is mentioned where appropriate. For X, the
“uwm” window manager”’ for the IBM-RT computer is
described and will be called “X/uwm.”

Although this article discusses advantages and disad-
vantages of various user interface choices, this is not
meant as a criticism of any window manager. As with
all user interface decisions, there are often external con-
siderations that influence the choice. The descriptions
are meant to illustrate concepts rather than evaluate win-

September 1988

dow managers.

The Table shows all the window managers mentioned
in this article. The entries are approximately in chrono-
logical order.

User interface of application programs

One interesting consideration is the extent to which
the window manager’s user interface affects the user
interface of application programs that run under it. Even
window managers that try to minimize their user inter-
face will at least need to allow the user to change the lis-
tener and the positions of windows. and even this user
interface will affect how an application program can
interact with the user. Some window managers attempt
lo minimize their restrictions of the application’s user
interface so they can allow applications maximum flex-
ibility.

Other window managers attempt to specify the user
interface of applications to a large extent to ensure con-
sistency. In any case, the choice of the user interface of
the window manager must affect the user interfaces of
the application programs. Even such window managers
as X, whose own user interface can be changed. are not
free of this problem. Different applications that run at
the same time cannot all impose their choices on the
same window manager, since the window manager user
interface is global to all applications. Figure 4 shows a
few sample window managers and how much they
influence the user interfaces of applications.

Presentation

Now the taxonomy of the user interface part of win-
dow managers will be presented. This section discusses
the presentation aspects of this taxonomy, and a later sec-
tion discusses the operations. Figure 5 shows the tax-
onomy of the presentation aspects of window managers.
The following sections explain the various options
shown in this figure.

Tiled versus overlapped

The first major decision is whether windows are
allowed to overlap or not. Some window systems (includ-
ing Cedar and the original versions of Microsoft
Windows™) require that windows be side by side and
not overlap. As discussed earlier, this is called “tiling.”
The alternative is to allow windows to overlap, and this
is provided by Smalltalk,””™* X/uwm, and many
others.

Implementation and human factors issues guide the
choice between tiling and overlapping. In tiling systems,
the computer is typically in charge of managing the win-
dow placement and size, limiting the user’s freedom. In
covered window managers, the user must usually man-
age the windows. Putting the mouse in an arbitrary win-
dow is also easier with tiling, since all of the windows

71

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

none little alot total Figure 4. The amount that the user interface of some
— f } ; } } ! sample window managers affects the user interface
i i i i h ?72? . .
7 X Blit SunWindows Sapphire Cedar Macintos Of appllcatlon programs.

1 column Emacs
fixed columns AEZ columns Cedar

tiled arbitrary Andrew
arbl li)osmons
‘|' can be partially off screen Macintosh
‘ verlapped ur"":"' not) listener can be covered
I[g ,[update covered wmdows—[Sapphire, X
| not ot
’] Interlisp-D Macintosh
" Text only Interlisp
. L Text + Sapphire
"‘ E title lines I'“:' ext + graphics
\,
“ ’|’| 10 title lines W, E Contm;x{s visible command buttons Macintosh
'|‘ Blit

iy title line Whltcchapel X

‘ " window border Sapphire, X
[Listener shown il = text cursor Interlisp-D
" / " by changing: "n":"' command areas Macintosh
no visible change ™ interior of window Blit
Presentation ’.u‘" represent data objects Star, Macintosh
of Windows l ;: icons represent windows Sapphire, X
\, l window and icon shown at same time Sapphire
||| ’l one or the other shown SunWindows, X
“I |' 'u' icon shown as shadow Macintosh, Star
\ ‘1' |—_— icons are essentially static Macintosh
Il o dynamically change Sapphire, X
r—has icong g::: icons can be moved by user X
l| ™ movable as a group Sapphire
" lll'u. not movable
\ ‘u. icon size is variable X
o icons 'l. l:, size is fixed Sapphire
|‘ Interlisp-D, l\ full commands in icons Sapphire, X
ll Blit E limited commands SunWindows

l
|“ rectangular windows only Sapphire, Cedar
' Q‘ other shapes allowed Macintosh, NeWS

|

‘l.
l
\‘ ',,wfor iconsSapphire
l

has special areas.llll---"-"“for prompts and input Dlisp, Interlisp-D
1 '“I:"-« for window manager commands PN X

' no special areas ."u, coverable?
‘ X *removeable?

.l ,,..--color supported? Cedar, SunWindows
‘other issues: l‘['“"'"-u.t;a-deﬁnz:\ble background? Macintosh
"y
Wetc.

|
‘\

Figure 5. Taxonomy of the presentation aspects of the user interface of window managers. Solid lines are
choices (exactly one of the options is chosen). A window manager can include any or all of the options at the
ends of the diagonal gray lines. Example systems are shown in an outline font. There will typically be many
other systems that also share the same features. The options shown are discussed in the article.

72 IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

are always visible. Often, the “‘best’” style is a matter of
personal taste, but one study discovered that, while users
claimed to prefer covered window managers, they spent
less time doing window management operations with
tiled window managers.”' The overall timing results for
task completion were somewhat inconclusive, however.

The computer’s screen size will also affect whether til-
ing or covered is preferred. With small screens, such as
on the standard Macintosh, there is not enough room to
use the tiling style. For the window-manager imple-
menter, graphical output primitives are more difficult to
provide with covered systems, since the output must be
clipped to differently shaped regions. On the other hand,
with tiled systems, the implementer must provide some
sort of automatic screen layout facilities. Some window
managers, such as Viewpoint* (which is the successor
to Star), allow the user the choice of covered or tiled win-
dows. Another possibility is for a window manager that
uses covered windows to provide automatic layout. This
is harder than with tiled windows, however, because it
is less clear where windows should be placed.

When windows are tiled, the next decision is whether
the windows must be arranged in fixed columns or
whether the windows can be in arbitrary places on the
screen (see Figure 6). A good discussion of the various
options for tiled window systems can be found in
Cohen’s article.” Originally, the Andrew window man-
ager used a constraint system to allow windows to be
nonoverlapping and anywhere on the screen. The sys-
tem would adjust the sizes of windows based on the con-
straints whenever a new window was created or an old
window destroyed. Unfortunately, users did not like this
for a number of reasons: It took too long for the windows
to finish adjusting themselves after a change, windows
all over the screen would change size when a new win-
dow was added or removed, and the screen layout result-
ing from one window changing was unpredictable.
Therefore, Andrew now supports a much simpler
approach instead, with a user-defined number of
columns.’

The RTL/CRTL window manager from Siemens also
uses constraints.*® The current version runs on top of
X11, and it reportedly does not have the problems dis-
cussed above for Andrew.

If there are fixed columns, then there can be either a
specified number or an arbitrary number. Probably the
first use of the window concept was in such full-screen
text editors as Emacs,* which allowed multiple files to
be edited at the same time by dividing the terminal
screen into horizontal sections. This idea has been
extended in window managers that allow multiple
columns. For example, Cedar provides for exactly two
columns on a black-and-white display (see Figure 2)
along with one additional column on the optional color
display.

If windows are allowed to overlap, then there are a
number of secondary options. First is whether to allow

September 1988

A A
D D
B| C
B E
E
F F
H ! c
G G

Figure 6. Tiled windows can be in arbitrary places
(left) or in fixed columns (right).

windows to extend partially off screen (so that only part
of the window is visible on the screen). Most covered
window managers support this. Another option is
whether to allow windows to be updated while they are
covered. It is clearly more difficult to clip the output
operations correctly so that covered windows can be
updated, so such older window managers as Smalltalk
and Interlisp-D?® require that windows come to the top
before being written to. Most modern window managers,
however, allow output to windows while they are
covered. If output can occur in portions that are covered,
the next question is whether the listener window is
allowed to be covered. There is no additional implemen-
tation difficulty in allowing this, but some window
managers, such as the Macintosh, always bring the lis-
tener window to the top, to help users keep track of
where they are typing. Other window managers, such as
Sapphire and X/uwm, allow the listener to be covered
so that users can have maximum flexibility in arranging
their working environment.

Title lines and borders

All window managers provide some “decoration” for
the windows. This usually includes special “title lines”
at the top and special borders around the entire window.
The title line typically shows such global information as
the current directory, the name of a file being edited, or
the name of the program being run (see Figures 1 and 2).
The Blit*® window manager is one of the few window
managers that does not use title lines. In addition, the
title lines and borders may contain other decorations and
command buttons.

Showing the listener

An important presentation issue is how the listener is
shown. Since there are multiple windows and only one
listener, it is important that the user know which win-
dow is the listener. One method for specifying the lis-
tener is simply to move the mouse into a window. In this

73

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

€ File Edit Diew Special

apers

6 items

1,899K in disk

==

Brad's Harddisk

1,899K in disk

17,273K available }x commartax comm

System Folder Utilities

& &

MacPaint MacDraw

Paint

Yord Help Main Dictionar

I

Draw Screen dumps mple Documer

e

Figure 7. The listener on the Macintosh® is shown by drawing lines in the title line and displaying the com-
mand areas. The scroll bars and arrows on the right and bottom of the window move the display inside the
window, the icon at the bottom right of the window is used to change the window’s size, the icon at the top
right is used to make the window full screen, and pressing in the square at the top left closes the window.

Somgoler VI

St e &~ 3

»ShowScreen

Figure 8. Sapphire'® displays the listener window by
making its border thicker. The window marked W2 is
the listener. The icons are in the window at the bot-
tom, and they can display status information about
the window and the process running in it.

case the window containing the mouse tracking symbol
is clearly the listener. The window manager might use
some combination of other ways to show the listener,
including changing the title line decorations
(Whitechapel®®), changing the border decorations
(Sapphire'), changing the title and border (X/uwm?®’),
changing the shape of the text input cursor or starting
it blinking (Interlisp-D), removing the command areas
{Macintosh), or even filling the window with a particu-
lar pattern when it is not the listener (dots are used in
the Blit). Figure 7 shows a combination of changing the
title line and command areas, and Figure 8 shows an
example of using the border only.

IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

Icons

A major issue of presentation in modern systems is
whether the window manager supports icons or not.
These were invented by David Smith"” and first used in
a window manager in the Xerox Tajo environment’
(which was later renamed XDE*). In Tajo the icons
were originally just the title lines of the windows. A simi-
lar approach is used by the Andrew system, which leaves
the title line where it was in the column, and simply
hides the window contents.

Pictorial icons were first used in the Xerox Star,'?
where they give the user the illusion of operating in a
physical environment. Each icon represents an object in
an office environment (documents, folders, file cabinets,
printers, etc.), so the user can learn how to operate these
objects by analogy to the way operations are performed
in the physical world. For example, to delete a file, the
user moves the icon for the file to the icon that looks like
a trash can (see Figure 3). Icons in the Star, as well as in
the Apple Macintosh, therefore represent data objects
and processes.

Most other window systems use icons in a different
way. They represent windows. [n these systems, the icon
is simply another representation for a window, without
the additional semantics of being data objects that can
be operated on.

Most systems provide icons as an alternative represen-
tation for windows, so that a window is either full size
or “shrunk” to an icon. Some of these systems, such as
the Macintosh and Star, leave a ‘shadow” of the icon to
show where it came from, whereas other systems (Sun-
Windows and X/uwm) do not.

The Sapphire window manager uses icons in an
entirely different way: The icon for a window is always
fully visible, even if the window is on the screen. The
icons in Sapphire are used to give commands to the win-
dows and to show eight pieces of status information
about the window and the process running in the win-
dow.® This includes percent-done progress indicators®
to show how the job is doing and pictures to show when
an error has occurred or when the process in the win-
dow is waiting for input (see Figure 8).

The Sapphire icons are an example of how the icons
can dynamically change. Another example is the X /uwm
window manager, where an icon can be a tiny version
of the actual window, as shown in Figure 3.

In most other window managers, however, the icons
are essentially static. Often, there are situations where
the icon changes a little, however. For example, in the
Macintosh, most icons are static, except that the trash
can icon bulges when something is put into it. Similarly,
on the Star, the mail icon changes to show when mail has
arrived.

Other issues with icons are whether the user can move
them around, whether their shape and size are fixed, and
whether the user can give commands to the window
using the icons. In the extreme, if icons are just an alter-

September 1988

native representation for windows, the user should be
able to type to the icon and have the text go to the appli-
cation running in the window. This is allowed in some
window managers, such as Sapphire, but others limit the
commands available when the window is shown as an
icon.

Window shape

A minor point is what window shapes are supported.
Usually, only rectangular windows are provided, but the
NeWS window manager does support arbitrarily shaped
windows (see Figure 9). Most of the windows in the
Macintosh are rectangular (Figure 7), but they are
allowed to be arbitrary shapes. Obviously, a tiling win-
dow manager must use shapes that can be tiled, such as
rectangles or hexagons (all existing ones use rectangles).
Many window managers simulate arbitrary shapes for
icons, even if the windows must be rectangular.

Special areas

Another presentation aspect of window-manager user
interfaces is whether any screen areas are reserved for
special functions. For example, DLisp* has a reserved
area at the top and Interlisp-D has a reserved window for
error messages and user prompts. Other examples are
the Macintosh, which reserves the top line for a com-
mand menu, and PNX,*" which has a special window-
manager window for giving some window-manager
commands. Other window managers have special areas
for icons, which may be in the background, or in a spe-
cial window (as in Sapphire). Icons may be in arbitrary
places, as in X/uwm, on a regular grid, as in the Star, or
in arbitrary places with a user-callable ‘‘neatening” onto
a grid as in the Macintosh. Another issue is whether the
icons can be covered by other windows (usually true if
there are overlapped windows, false if tiled windows).

Other issues

There are a number of other issues of presentation,
such as whether color is supported, whether the user can
manipulate the presentation (for example, changing the
background pattern in the Macintosh), and to what
extent application programs can change the presentation
(for example, changing the title line’s appearance).

Operations

The second major component of the user interface of
window managers is the set of operations that the user
can execute to control the windows. This component can
be further subdivided into the functionality of the oper-
ations provided, and the user interface of those opera-
tions. Taxonomies for these aspects are shown in Figures
10 and 11, respectively.

Functionality

The first issue, of course, is which operations are sup-
ported. All window managers must supply some way for

75

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

PosSrpt P o aees

Mentans(8) ls /usr/window/sundev/din
Makefile cpe*

previev BAKe show*
pse (2334 petarn® show BAK®
Ps olde flowere® rubber* sketch®
Kesdroid® go* wy* tdeng
Kadroid BAKe previeve scoruce tem

entana(#) show lescpard
(1) 13712
frentanailo] §

ey e e s
M+ 5o vl e B
TR e

—
m—um“"'.'r‘f‘g‘..‘.‘:'_"'.ﬁﬁ‘
Mg e—

A S e b o e e
e - 8 s s B
Pt Ny @ e s KPBOUE 5« e 0 . b aswpn
e o

Tt gs M+ et et ST & < e gt
N 1700t oy B b ¢ e o s e
(9

ppebnyep-Spivn, ‘.—IA.-‘..'.—-'_ '
IR Sproms

e g T V1

At o o+ iy ppmrny e ot

-

~ 0 e e -

s = e o s e eyt <

b e g yn . Pyt
T by e :

podhgrapuen.cpfylrdrsuapepncas-

oenn

1.7

Blusoerry

Vantis Crosm

One
Bost0n Cream

January Pie Sales

Figure 9. NeWS" supports nonrectangular windows.

the user to change the listener. There usually are also
commands to create new windows and delete old win-
dows. A system with covered windows will also need a
command to make the window become uncovered (top),
and there is usually a command to make a window be
covered by all other windows (bottom). The bottom com-
mand is often used to remove windows that are hiding
a fully covered window.

Most window managers allow the user to move win-
dows and change their size, but these operations may be
restricted in a tiled window manager. For example, in
Cedar, you can only move a window to the other column
or change its size in the current column, and the width
of all windows in a column must be adjusted together.
Other tiled systems allow a window to be placed in the
“seam’ between any two other windows. With a covered
window system, an issue is whether the windows can
change size or move while they are partially covered {true
in Sapphire, false in X/uwm). On the Macintosh it is pos-

76

sible to move a covered window by holding down the
command key while pressing in the window’s title line.

Another issue is whether a window can be modified
only from a particular corner (as in the grow operation
for the Macintosh, which works only from the lower
right corner), from a set of control points (Sapphire
allows windows to be moved and changed in size from
points on each side and corner), or from anywhere in the
window (as in X/uwm).

For window managers that have icons, there are often
operations to shrink the window down to the icon and
to expand from the icon to normal size. There might also
be operations to move the icon itself (no system I am
aware of allows the user to change the icon’s size).
Another operation that is often provided is the ability to
make a window full screen or full size. The old size and
pnsition are remembered so a single operation can make
the window go back. This command is available in Sap-
phire and for some windows on the Macintosh.

IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

 listener change
" create window

f

<all>
<all>
M destroy window <all>

" " : ||“'|ll""'" [op <all>
l':" ,"lf covered=" e bottom <most, not Macintosh>
I
l' / e » change columns?
i iftiled .
— A" move to arbitrary place?
I{ ,l' in columns l“l:;' change column width?
’l | - ' change individual window height?
f smove and grow] gg:;gnl g arbitrary grow provided?
l ' e ¥+ arbitrary move provided?
|| ",»" move/grow while covered Sapphire
|| .v"'l — if coveredll:"'I 90 Macintosh, X
Functionality ‘I"" " from special control points Sapphire
£ tions [l from one place Macintosh
of operations ll \ g,)) from anywhere x
on windows: ll. "y, Lo Shrink to icon
l' l‘ W, icon ommﬁons u":i:um move icon
“ expand from icon

o fllxﬁl scr:ﬁ,n .Szgphif;(
Mycirculate all windows -
h ~|refresh windows
other operanons|||-:;;;--quit window manager
ll:u.:' change default background color
\. '\\: application functions available?
etc.

|

|'|l' operations abortable by user?

I" operations disabled by application?
boperations performed by application?

Figure 10. Taxonomy for the functionality of window manager operations.

Some window managers provide additional opera-
tions. For example, most window managers allow a
change from black text on white to white on black;
X/uwm allows the most covered window to be circulated
to the top; and Sapphire and X/uwm have commands to
refresh the contents of windows.

For systems where the window manager itself is
optional, such as SunWindows and X/uwm, there is
often a command to quit the entire window manager.
Some window managers allow applications to insert
their own commands into the normal window manager
command mechanism (for example, into the Interlisp-D
menus). There may also be an Undo command to reverse
the previous window manager command.

Another important question is whether the user can
abort a command after it has started. For example, in the
Macintosh, if you begin to move a window and change
your mind, you can move the cursor into the command
area and the move operation will be aborted. On the

September 1988

other hand, there is no way to stop the grow operation
on the Macintosh. In Sapphire, any operation can be
aborted by hitting the Delete key on the keyboard.

Another issue is whether application programs can
affect the functionality of the commands. For example,
a program implementing a terminal emulator might
want to restrict its window to be exactly 24 by 80 charac-
ters big and therefore disable the window-size-change
command. In a different situation an application may be
designed for novices and therefore want to disable any
“dangerous” window manager commands. Another
example is how dialogue boxes refuse to allow the user
to change the listener on the Macintosh.

A related question is whether applications can execute
the commands. For example, can applications move
existing windows or change their size? Can an applica-
tion change the listener? The latter functionality is use-
ful to provide alarms for special asynchronous
situations. For example, the PrintMonitor on the Macin-

77

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

User mterface“,:"
of operations “
on windows ll,

!
l‘1 l"l
| '||.

H‘I commands from keyboard (%

1 Macintosh
2 Star
number of mouse butt 3 SunWindows
any X, NeWSs

"E move mouse SunWindows first press sent to application Cedar
" — press mouse button ——Ehnddm from application Interlisp-D

"" OK if no listener X applicaton chooses Sapphire
" must be a listener \acintosh .
‘ areas invisibleSapphire
(Ispecific buttons Andrew g E areas visible Macintosh
| l‘ l’:’f'speciﬁc shift keys X " | areas become visible Cedar
3
" " " f ',mulliple ch'_cks used “..l"" . in windows themselves
/f iy Symbotics P o 0 e s
|/ T in borders
"" ‘i‘l / special command areas" " visible buttons
“ ll Fy hair-lines for move/grow Macintosh
,l’ oo feedbac] xl"" T full-window PNX
" S “l comners only Smalltalk
m
I y. Commands irom mouse trackmg symbol changes Sapphire
i

4 special shift key Macintosh

!

fhuwm special prefix key Sapphire

":\‘":"' special keys SunWindows

ll‘ ' keyboard change listener Sapphire
'1 .n""" assign buttons to commands
! user-tailorable interface? 'llﬂ'"'"”'pick which commands are available

k\ parameterize the commands
|. specify initial configuratiom——f—Teturns to previous Macintosh

ixed Cedar Ppop-up
slide out Interlisp-D

pull-down Macintosh
"MCsub‘men pages Andrew
o none §apphire etc.
"u,“‘ illegal options removed
Emegm options greyed Macintosh, X

illegal option displayed §apphire

—always the same

L_customizable using profile files X

Figure 11. Taxonomy for the user interface of window manager operations.

tosh pops up a window and makes it the listener when
there is a problem with the printer.

The advantage of a large number of commands is that
the user can perform operations in a variety of ways. The
disadvantage, however, is that it may be more difficult for
the user to know which command to use, and therefore
make the window manager more difficult for novices. In
addition, if a command has lots of variants and options,
it may take longer to invoke any single command, since
the various options must be specified. As an example,
allowing a window to be grown from any side or corner
usually involves three steps: first giving the grow com-
mand, second specifying the place to grow from, and
finally specifying the new size. When there is less flexi-
bility, as in the Macintosh, the second step is eliminated.

78

Future window managers will probably need to pro-
vide additional functionality in their user interfaces to
help the user control the windows. Whereas icons and
automatic layout for windows are good first steps, users
still find that they frequently lose windows and have dif-
ficulty reconstructing their working environment. This
is especially important since studies have shown that
people do not work on a particular task for more than 15
minutes on average before they switch to a different task,
presumably in a different window.*? Some research
window managers provide groupings of windows, so
that the user can set up a related group of tasks running
in windows in a particular layout, and go directly from
one group to another. Cedar contains a fixed overview
of 16 screens, each of which has a set of windows, and

[EEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

the Rooms system™ ™ provides arbitrary groupings of
windows.

User interface of operations

"The next important issue with operations is how they
can be speciflied by the user. Many window managers
provide multiple ways of giving the same command. For
example, there may be menus that contain all commands
for novices. as well as accelerators—faster ways for expert
users to give the most frequent commands using the
mouse and keyboard. Clearly, the considerations about
what user interface to use for the window manager must
be influenced by general user interface principles, which
are more fully described in other places, for example by
Foley and van Dam.*

Number of mouse buttons

Onec of the most obvious differences between window
managers is how many buttons on the mouse they are
designed to use. The Macintosh mouse has only one but-
ton because it is intended to be very easy to use for
novices. With more buttons, the novice might forget
which button performs which operation and be nervous
about pressing them. The designers of the Star system
did extensive testing and decided two buttons were eas-
iest to learn and most efficient.”” Many other window
managers are designed for three buttons (SunWindows
and Sapphire, for example). Some window managers
simulate a middle button on a two-button mouse by hold-
ing down both buttons at the same time. Naturally. the
customizable window managers, such as X and NeWs,
can support any number of buttons on the mouse.

Changing the listener

Of particular interest is how the user changes the lis-
tener. Some systems, including SunWindows and
Smalltalk, change the listener to whatever window con-
tains the cursor. Other window managers—including
Interlisp-D, Star, Sapphire, Blit, Cedar, and Macintosh—
require an explicit press to change the listener. Some
window managers, such as X and NeWS, allow the user
to pick which technique is used.

If an explicit press is required, then an issue is whether
this press should be sent through to be used by the appli-
cation program. If so, as in Cedar, changing the listener
must always do something to the application (such as
changing the insert point in an editor). If the button press
is not sent through, as in Interlisp-D. then the user might
be confused that the operation did not happen. Some
systems, such as Sapphire, let the application decide
whether to interpret the first press, but this means that
applications may operate inconsistently.

The advantages of changing the listener on cursor
movement are that this operation is easier and ftaster, the
mouse cursor provides a nice form of feedback {or which
window is the listener, and the problem of whether to
send the press through to applications is avoided. The
advantages of using a press to change listeners are that

September 1988

the listener does not change accidentally if the mouse is
bumped, input devices like a stylus that do not retain
their position can easily be used, the position of the
mouse can still be used even when it is outside of the lis-
tener window, the mouse can be moved outside the win-
dow so no part of the window is hidden under the cursor,
and if the input device is a tablet, it can be used in either
absolute (digitizing) or relative (mouselike) tracking
modes."’

Another issue is whether the window manager allows
there to be no listener. In X/uwm, for example, when the
cursor is outside of all windows (that is, over the back-
ground), kevboard typing just disappears. In Sapphire,
keys typed when there is no listener are saved and given
to the next window that becomes the listener. On the
other hand, the Macintosh will not allow no listener; if
vou press over the background, nothing happens, and if
the listener window is deleted, then the next topmost
window is made the listener. This tends to be much more
intuitive and keyboard typing is never lost.

A question for future window managers will be how
to handle additional input devices. Currently, window
managers typically support only the keyboard and one
pointing device. Research has demonstrated, however,
that using multiple input devices, such as touch tablets,
knobs, and switches, along with the pointing device (for
example, one in each hand) can increase the user’s effec-
tiveness.’ In addition, speech recognition is slowly
becoming practical. All of these input techniques will
have to be switched among windows as the keyboard is
now, and the issue will be whether to switch all devices
at the same time, to have different techniques for switch-
ing each device separately, or to allow certain devices to
be grabbed permanently by a particular window.

Other commands from a mouse

There are various ways that window managers allow
commands to be given using the mouse. Some systems,
such as Andrew, reserve a special mouse button to give
window manager commands. Other systems, such as
X/uwm, rescrve a special shift key on the keyboard. For
example, to give a window manager command on the
IBM RT computer, you need to hold down the “Alt’" key-
board key while pressing the mouse buttons, Still other
systems, such as Symbolics*® and Macintosh, use mul-
tiple clicking.

Pressing the mouse buttons while the cursor is in
different areas typically has different meanings. Most
window managers, for example, provide special com-
mands when the mouse is pressed in the title lines of
windows. Some window managers also allow the user
to press in the borders of windows, which might be used
for changing a window’s size or position. The Macintosh
window manager, among others, has special “buttons”
in the window title line and border which are used for
closing a window or changing its size (see Figure 7). On
the other hand, some window managers allow the com-
mands to be given if the cursor is anywhere inside the

79

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

Figure 12. Various cursor pictures used in Sapphire®
to show which operation is in progress.

window. Sapphire and the Macintosh, for example,
cause a window to become the listener when the cursor
is pressed anywhere inside it.

The special areas for giving commands are sometimes
not visible in the window. For example, Tajo and Sap-
phire divide the title line into three regions horizontally
and assign different functions to each region. The divi-
sions are not shown, but the user is assumed to be able
to differentiate the middle from the left and right of the
title line for any window that has a reasonable size. Other
window managers only use visible areas. The trade-off
is obviously using screen area for command labels so
they will be easier to find and more obvious for novices,
versus using the screen space to display other useful
information. Cedar has a unique solution to this prob-
lem: Some of the command buttons are hidden under-
neath the title line, and the title line is replaced with the
command menu whenever the cursor goes into the title
line.

Another issue when giving commands with the mouse
is what kind of feedback the user sees. Most systems pro-
vide hairlines the size of the window when a window is
moved. The PNX window manager actually has the
entire window follow the mouse in real time, and origi-
nally Smalitalk showed only one corner.

Often, there will be feedback in the cursor picture as
to the operation being performed. For example, X/uwm
shows a picture of the button that is down. Sapphire uses
the cursor picture to show which operation may happen.
When the button is pressed in a particular area, the cur-
sor changes ta show what will happen (see Figure 12).
If the button is released, the operation happens, but if the
cursor is moved away before releasing, the operation is
aborted. Different cursor pictures are also often used to
show what mode the user interface is in.

80

Menus

Commands in window managers are usually given
using menus. A menu is a list of options, and in a win-
dow manager, the desired option is usually picked by
pointing at it with the mouse. Menus were classified as
an add-on earlier, since they are usually supplied to
application programs as a service. On the other hand,
most window managers also use menus as part of their
own user interface, so it is necessary to discuss them
here. This discussion is not meant to be comprehensive,
however, since there are many different ways to present
menus and the options listed here are only those that
have been commonly used with window managers.

Menus can be always visible (usually at a fixed place
on the screen or a fixed place in each window), in which
case they are called fixed menus. Alternatively they can
appear when the user performs some action, and then
are called pop-up menus (see Figure 13). Pop-up menus
are often used because they do not take up screen area
when not in use, and they appear at the cursor so less
hand movement is needed. On the other hand, they have
the disadvantages that novices may not know how to
make them appear, and they usually take longer to use
since the user must first perform the action to make them
appear, then search through the menu for the correct
item, and then make the selection.

Fixed menus also allow the user to mouse-ahead.
Mouse-ahead is giving commands with the mouse
before the system is ready to accept them. This is analo-
gous to type-ahead from the keyboard. Pop-up menus are
hard to use with mouse-ahead because the menu is not
displayed. so the user cannot see where the desired item
is. Fixed menus are used by the Macintosh on the top line
of the screen (see Figure 14b), in DLisp in windows that
can appear anywhere on the screen (see Figure 13b), and
in Cedar as the menus in the title lines (see Figure 2).
Fixed menus in a special place on the screen, as in the
Macintosh, are probably appropriate only when the
screen is small, so that the maximum hand movement
to move the cursor to them is not too large.

Many window managers use pop-up menus to give
window-manager commands. For example, in X/uwm
when the Alt key and the left mouse button are held
down, a menu pops up which contains the standard
window-manager commands. The middle button with
the Alt key pops up a different set of commands. Sap-
phire provides a menu of commands when the right
mouse button is pressed over the left or right title line
areas. A distinction among pop-up menus is whether
they appear on a down press and the selection is made
on the release (X/uwm), or whether a second down press
is needed to make the selection (Symbolics and Sap-
phire). Some menu systems support both styles
(RTL/CRTL™Y),

Another issue with menus is whether submenus are
supported. A submenu is a menu that appears after a

IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

Thiz texr 15 th tiw ohdy pane of a
o —pangd Wi, window
Nl hape anyg nuanber o

i C i

PRBRET

aqain

e A pane can o cpy fth et and
b graphics.,
st

Wien a wnnd] Cdqore Cfoscd, all s
pargs redispl compus paneenes,

rruln
cateel
Al

a

Figure 13. A pop-up menu (a) from smalltalk, and
fixed menus (b) in DLisp.

particular item in a menu is selected. This will typically
provide more options or parameters to that particular
operation.

There are various ways to provide submenus. The most
obvious way is simply for them to pop up after the main
selection has been made. Interlisp-D and SunWindows
have the submenus appear when the cursor is slid off a
menu item to the right (see Figure 14a). Macintosh uses
a similar idea, called pull-down menus, but here the main
menu is horizontal and the submenus appear when the
cursor is over any top-level item (see Figure 14b). Andrew
has the menus stacked like pages of a book (see Figure
14c), so the user can flip through them quickly. Many
other options are possible.

A final feature of menus in window managers is the
handling of items that are currently illegal. For example,
a particular application may prevent its window’s size
from being changed. The illegal item might be left out of
the menu altogether, it might be included but shown in
gray, as in X/uwm and the Macintosh (see Figure 14b),
or it might be shown normally and just fail to operate,
as in Sapphire.

The advantage of showing the option in gray is that the
illegal items are obvious, but the other items in the menu
always appear in the same places so the user gets famil-
iar with where items are placed. The advantage of show-
ing only the legal options is that more items can be
included if they all appear in independent sets.

Commands from the keyboard

Some window managers allow operations to be
executed using the keyboard. This might be done by
using a reserved shift key (for example, the command key

September 1988

Sred AL A ee Mg FrPTT [!

Ouanmont

rew mote werd)))
(M TRAGE)

12-

fretpege 72 100)
-

Ve
1-ees MaTHTES A TroiR
LR IR DS TR L SR
oA ALV U

MAABMITES LETAtenE Y

va-

19-mermpn 1)
{Mee wom Mosmter. 3 2051
)

19-[Mes wom Burvon,) $45)
WOAT 18 300 1t new P ver
wrrnsat

‘;u- rom Burten 4t B tens ¢, I B%ANA)

Nos Ure iz Unee *°
23- -+« DTN o I
» .
[XL f
(Lapein TL i
G ln: c wert tre - 8y
e, brrw C BEILFILE wlimai(s0T .
N W
itote me eL. s o . i . .
¢ - L R L S TN X LT WNY AT W
FILETLAP, e unaeet e 1 RO ST T TP BT T TR
10001 Be sweut teercns "
e "
. PPINL CDATE (aIThNoVNRLLL - 0186144876
(MarcHINe PILE. TILE
¢
frtemer(.. frle tcort. eng O i decn: CLumvet
1':::: -
N

! l
Friert var witten o i

-]

on the Macintosh); by using reserved keys for special
functions (some function keys in Apollo,* for example,
and SunWindows); or by reserving a prefix key which
must be typed before window manager commands, as
in Sapphire.

The keyboard commands are usually considered
accelerators which experts will use when pop-up menus
are too slow. Sometimes the keyboard commands are
provided for people who do not like or cannot use the
mouse. EasyAccess on the Macintosh, for example, was
designed to allow handicapped people to replace all
mouse commands with keyboard actions. The Apollo
window manager is one of the few that was designed
with the keyboard as its primary input device; the early
Apollos did not have mice.*

Other issues with keyboard commands are whether
type-ahead is supported, whether the keyboard can
change the listener (false in the Macintosh, true in Sap-
phire and SunWindows), and whether the keyboard can
make selections in the menus.

Other user interface issues

Some commands require arguments. For example, the
user must specify a new size for a window when the
change-size or create-window command is given. Some

81

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

" & file tdit styte font JEETTITH Arronge Fill
é"‘,{v A 73

Hide Rulers ‘
Hos] Custom Rulers...

vNormal Size
Reduce to Fit

Show Frofile

Set Timeout [Uniocked : B
Choose Display | | gcued Include Previous Use!
eyl Any Login Add Member

tnlarge

Turn Grid OFf
Show Ruler Lines he

P hy ¥
awedLan [T Remove Member

Show Size
Hide Page Breaks
Drawing Size...

a b
.[EEIYextu‘ AnOrew s ‘crclev-lsvl— teadMall circlevile
NEW MAIL St
{Typescopt hm -2 kirwanhenghts | | yies
Bt T2 i « Lydla.Defilippe Show
contole £ - - Oral Thesis-ViJay Saraswat r -
B + Barry Silverman n
4 PM
» A L] Ya Basta r Ok iad
Tisk 7dev hida is 97% Tull. QVim Moms roseathal Unread Mail
2 arrors have bean loig‘.d on the coas: RBarry Silverman Deleted Mad
Disk /dev/hd0a is 97% full b RDS Deal . Selected Mak
11libs -
adding /unix/romp/usr/andrew/lib/consc o Richard Wallstern Unclassified Mal
- Two annouacements
ypescrpt S circlevile] +Michael T. LoBue
wml Kim C. Recommendation
~/paper > rtead mail y |
~ipaper > s Mmpismape [Dsandra Bond Level 1 and 2 items 4
/tmp/snapshot-2
| ~/paper > o To: .@ThLo-P2opie -
ABSTRACT of TH
1 Tpeaker: ViJay A. Saraswat
Daw: Friday - 1 MNovember, 1985
L Time: 10:00 am
Place: 722

0
CONCURRENT LOQIC PPROCGRAMMING LANGUAGES

The domain of logic programming languages. conmsists, of the most part, of
progmnmmg languagss based on Horn logic which provide modified forms of
top-down. SLD-refutaion execution engines. A program in these languages
consists of a set of definite clause axioms with (perhaps implicit) control
information for guiding the underiying engins. Execution is initiated by the
resentation of a conjunction of goals Or queries and tsrminates when the engine,
ollowing the prescribed control, discovers either a proof of the goals, or the
impossibility of such a proof. Concurrent jogic programming (CLP) languages
provide execution engines capable of pursuing concurrently proofs of sach of the
goals 13 a conjunctive system (so-called and-parallelism) and aiso differeat possible
- roof paths for each goal (or-parallelism) Examples of 2xisting concurreat Horn
anguages are Concurr=at Prolog, Parlog, JHC, Delta-Prolog and CP(L.|.&]

In this thesis 1 propose to lay a sound theoretical foundation for. and explore
the paradigm of, CLP languagss. Spacifically, I propose to investigate the desnign,
semantics, implementation and use of such languages.

The thests 15 intended 0 make contributions to each of the following areas

programming languags design, via
- an understanding of the design space for
D conCurreat programming languag+s based on aannctated Hora logic,
the design of a paradigmatic CLP language (CP('.|.&.;D providing

C

Figure 14. Submenus may appear when the user slides the cursor out of the right of the item marked with an
arrow (a) as in Interlisp-D,* when the cursor is over an item (b) as in the Macintosh,® or they may be stacked
like pages (c) as in Andrew."® The Enlarge command in (b) is shown in gray because it is currently illegal.

82 [EEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

window managers provide accelerators to allow special
values of the parameters to be specified easily. For exam-
ple, in X/uwm, when creating a window, a special but-
ton combination will make the window a default size
that depends on the application (for example,
80-by-24-characters high in the default font for a termi-
nal emulator). A different button combination allows the
user to specify the size using the mouse.

Another important issue is to what extent the user can
change the user interface of the window manager. Win-
dow systems such as X and NeWS were designed to allow
the user total flexibility, so almost any aspect can be
changed. In X/uwm, many of the changes can be made
by editing specially formatted text files (for example,
.uwmrc), but other changes require writing programs.
Other window managers allow customization to a lesser
extent. For example, Cedar allows the menu items and
their functions to be assigned by the user employing
“TIP” tables," but the general window layout is
fixed. A related issueis how much of the initial screen
layout can be specified for when the system is powered
on. Some systems always start the same way, others allow
the user to define the initial configuration in profile files
(X/uwm), and others return the screen to the last config-
uration (Macintosh).

Conclusions

This article has attempted to list some of the important
common aspects of the user interfaces of window
managers. The various features can be broken down into
fairly simple taxonomies, which will be useful when
studying and comparing current window managers or
designing new ones. Clearly, there will always be new
innovations that are not in these taxonomies, but they are
expected to cover the important parts of new designs,
and may even help future designers see where new tech-
niques might be used.

One obvious conclusion from looking at the taxono-
mies is that there is not a great deal of difference among
different window managers. In fact, when faced with a
new window manager, a user couid probably deduce
how to operate it by pressing the various mouse buttons
with various keyboard shift keys (Shift, Control, Meta,
Hyper, Super, Alt, etc.) held down over the special areas
(in the window, the title line, the border, on any special
decorations which might be buttons, etc.). This is also
encouraging for efforts at standardizing window
managers, since there is less variability that must be
accommodated. u

Acknowledgments

First, I want to thank the Alvey workshop® for spon-
soring the conference that inspired this article. Mark
Weiser provided many helpful comments and edited an
earlier version of this article. Warren Teitelman partici-

September 1988

pated in some early discussions. A number of people at
various companies also supplied useful information
about their window managers. For help and support
with this article, I would like to thank Bernita Myers,
David Anderson, Doug Bunting, Richard Cohn, and
Randy Pausch.

Work on this article was started while the author was
in the Dynamic Graphics Project, Computer Systems
Research Institute, University of Toronto. Funding at
Carnegie Mellon was provided by the Defense Advanced
Research Projects Agency (DoD), ARPA order no. 4976
under contract F33615-87-C-1499 and monitored by the
Avionics Laboratory, Air Force Wright Aeronautical
Laboratories, Aeronautical Systems Division (AFSC),
Wright-Patterson AFB, OH 45433-6543.

The views and conclusions contained in this docu-
ment are those of the author and should not be inter-
preted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency of the US government.

References

. D.C. Smith et al.. “Designing the Star User Interface,” Byte, Vol.
7, No. 4, Apr. 1982, pp. 242-282.

. DC. Smith et al., *‘The Star User Interface: An Overview.” Proc.
Nat'l Computer Conf., AFIPS Press, Arlington, Va., 1982, pp.
515-528.

. W. Gregg, "The Apple Macintosh Computer,” Byte, Vol. 9, No. 2,
Feb. 1984, pp. 30-54.

4. RW. Scheifler and J. Gettys. *“The X Window System,”” ACM Trans.

on Graphics, Vol. 5, No. 2, Apr. 1986, pp. 79-109.

]

w

5. FR.A. Hopgood et al., eds., Methodology of Window Management
(Proc. Alvey Workshop), SpringerVerlag, Berlin, 1986, 250 pp.

6. G. Krasner, Smalltalk-80: Bits of History, Words of Advice, Addison-
Wesley, Reading, Mass., 1983.

7. L. Tesler, " The Smalltalk Environment,” Byte, Vol. 6, No. 8, Aug.
1981, pp. 90-147.

8. W. Teitelman, *“Ten Years of Window Systems—A Retrospective
View,”” Methodology of Window Management (Proc. Alvey Work-
shop), 1985, Springer-Verlag, Berlin, 1986, pp. 35-46.

9. D. Wallace, *“Tajo Functional Specification, version 6.0," tech.
report, Xerox. Oct.1980.

10. W. Teitelman, “A Tour Through CEDAR,” IEEE Software, Vol.1, No.
2, Apr. 1984, pp. 44-73.

1. D. Swinehart et al., “A Structural View of the Cedar Programming
Environment,” ACM Trans. Programming Languages and Systems,
Vol. 8, No. 4, Oct. 1986, pp. 419-490.

12. Sun Microsystems, Inc., NeWS Preliminary Technical Overview,

Mountain View, Calif., 1986.
13. B.A. Myers, “The User Interface for Sapphire,” CG&A, Vol. 4, No.
12, Dec. 1984, pp. 13-23.

14. W.K. English, D.C. Engelbart, and M.L. Berman, “Display Selec-
tion Techniques for Text Manipulation,” IEEE Trans. Human Fac-
tors in Electronics, Vol. HFE-8, No. 1, Mar. 1967.

15. B.A. Myers, “Tools for Creating User Interfaces: An Introduction
and Survey,” Tech. Report CMU-CS-88-107, Carnegie Mellon Uni-
versity, Computer Science Dept. Also to appear in IEEE Software,
Jan. 1989.

—

83

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27,

28.

29.

30.

3

—

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

84

J.H. Morris et al., “Andrew: A Distributed Personal Computing
Environment,” CACM, Vol. 29, No. 2, Mar. 1986, pp. 184-201.

Sun Microsystems, Inc. SunWindows Programmers’ Guide, Moun-
tain View Calif., 1984.

G. Williams, “The Lisa Computer System,” Byte, Vol. 8, No. 2, Feb.
1983, pp. 33-50.

Apple Computer, Inside Macintosh, Addison-Wesley, Reading.
Mass., 1985.

J. Warnock and D.K. Wyatt, “A Device-Independent Graphics Imag-
ing Model for Use with Raster Devices” Computer Graphics, (Proc.
SIGGRAPH), Vol. 16, No. 3, July 1982, . pp. 313-319.

J. Gosling, “‘SunDew—A Distributed and Extensible Window Sys-
tem,” Methodology of Window Management, Springer-Verlag, Ber-
lin (Proc. Alvey Workshop, 1985), pp. 47-57. (A slightly different
version of this paper with the same title also appeared in the Proc.
1986 Winter Usenix Tech. Conf., Jan. 1986, pp. 98-103.

Adobe Systems, Postscript Language Reference Manual, Addison-
Wesley, Reading, Mass.. 1985.

D. Sweetman, “A Modular Window System for Unix,”" Methodol-
ogy of Window Management (Proc. Alvey Workshop, 1985),
Springer-Verlag, Berlin, 1986, pp. 73-80.

MIT and DEC, X Tool! kit Library—C Language Interface; Tool kit
Beta Version 0.1; X Protocol Version 11, Boston, 1987.

K.J. Schmucker, “MacApp: An Application Framework,” Byte, Vol.
22, No. 8, Aug. 1986, pp.189-193.

Apollo Computer, *“Open Dialog Interface Management System
Supports IBM, DEC, and Sun,” Product Announcement, Chelms-
ford, Mass., 1987.

M. Gancarz, “Uwm: A User Interface for X Windows,"” Conf. Proc.
Summer Tech. Conf., Usenix, Denver. jan. 1986, pp. 429-440.

V. Puglia et al., “Operating in a New Environment,” PC Magazine,
Feb. 1986, pp. 109-132.

A. Goldberg, Smalltalk-80: The Interactive Programming Environ-
ment, Addison-Wesley, Reading, Mass., 1984.

A. Goldberg and D. Robson, Smalltalk-80 The Language and Its
Implementation, Addison-Wesley, Reading, Mass.. 1983.

. S.A. Bly and].K. Rosenberg, A Comparison of Tiled and Overlap-

ping Windows,” Proc. SIGCHI, Human Factors in Computing Sys-
tems, ACM, New York, 1986, pp. 101-106.

Xerox Office Systems Division, ViewPoint Users Manual, Palo Alto,
Calif,, 1985.

E.S. Cohen, ET. Smith, and L.A. Iverson, “Constraint-Based Tiled
Windows,” Proc. 1st Int’l Conf. on Computer Workstations, CS
Press, Los Alamitos, Calif., Nov. 1984, pp. 2-11.

R.M. Stallman, “Emacs: The Extensible, Customizable, Self-
Documenting Display Editor,” Tech. Report 519. MIT Artificial
Intelligence Lab, Cambridge, Mass., 1979.

W. Teitelman and L. Masinter, “The Interlisp Programming Envi-
ronment,”” Computer, Vol. 14, No. 4, Apr. 1981, pp. 25-33.

R. Pike, “Graphics in Overlapping Bitmap Layers,” ACM Trans.
Graphics, Vol. 2, No,, 2, Apr. 1983, pp. 135-160. Also appears in Com-
puter Graphics (Proc. SIGGRAPH), vol. 17, No. 3, July 1983, pp.
331-355.

D.C. Smith, Pygmalion: A Computer Program to Model and Stimu-
late Creative Thought, Birkhauser, Basel, 1977.

Xerox Office Systems Division, Xerox Development Environment:
Concept and Principles, Part #610E00130, Palo Alto, Calif., 1981.

B.A. Myers, “The Importance of Percent-Done Progress Indica-
tors for Computer-Human Interfaces,” (Proc. SIGCH)1, ACM, New
York, 1985, pp. 11-17.

W. Teitelman, “‘A Display Oriented Programmer’s Assistant,” Int’l
J. Man-Machine Studies, Vol. 11, 1979, pp. 157-187. Also Xerox PARC
Tech. Report CSL-77-3, Palo Alto, Calif,, Mar. 8, 1977.

Int'l Computers Ltd., ICL PERQ Guide to PNX, Int’l Computers:
Ltd., UK Software and Literature Supply Sector, Reading, RG3
1NR, UK, 1983.

42

43.

44.

46.

47.

48.

49.

"V

m

. L. Bannon et al.. “Evaluating and Analysis of Users™ Activity
Organization,” Proc. SIGCHI, Human Factors in Computing Sys-
tems, ACM, New York, 1983, pp. 54-57.

S.K. Card and A. Henderson, Jr.,, “A Multiple Virtual-Workspace
Interface to Support User Task Switching,” Proc. SIGCHI +GI.
Human Factors in Computing Systems, Graphics Interface, ACM,
New York, 1987, pp. 53-59.

D.A. Henderson, Jr., and S.K. Card, “‘Rooms: The Use of Multiple
Virtual Workspace to Reduce Space Contention in a Window-Based
Graphical User Interface,” ACM Trans Graphics. Vol. 4.. No. 3, July
1986, pp. 211-243.

.].D. Foley and A. van Dam, Fundamentals of Interactive Computer
Graphics. Addison-Wesley, Reading Mass., 1982.
W.L. Bewley et al,, “Human Factors Testing in the Design oerm.\'"s
8010 ‘Star’ Office Workstation,” Proc. SIGCHI, Human Factors in
Computing Systems, ACM, New York, Dec. 1983. pp.72-77.

W. Buxton and B. Myers, “A Study in Two-Handed Input,” Proc.
SIGCHI, Hwman Factors in Computing Systems, ACM, New York,
Apr. 1986, pp.321-326.

R. Stallman, D. Weinreb, and D. Moon, Lisp Machine Inc., Lisp
Machine Windows System Manual, Culver City, Calif. 1983,

Apollo Computer Inc., *Window Manager,”” Chelmsford, Mass..
1981.

Brad A. Myers is a research computer scientist
at Carnegie Mellon University. From 1980 until
1983 he worked at PERQ Systems Corporation
where he designed and implemented the Sap-
phire window manager and numerous PERQ
demonstrations for the SIGGRAPH equipment
exhibition. His research interests include user
interface management systems (UIMSs), user
interfaces, programming by example, visual pro-
gramming, interaction techniques, window
anagement, programming environments, debugging, and graphics.
Myers received a PhD in computer science at the University of

Toronto, and MS and BSc degrees from the Massachusetts Institute

of

Technology. While at MIT, he was a research intern at Xerox PARC.

He is a member of SIGGRAPH, SIGCHI, ACM, and the Computer
Society of the IEEE,

Myers’ address is Computer Science Department, Carnegie Mellon

University, Pittsburgh, PA 15213-3890.

IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply.

